ADVANCES IN DAM ENGINEERING

Edited by Dr Pedro Manso

Collection of short reviews of selected papers on innovative aspects of Dam Engineering prepared by EPFL students who followed the Dam Engineering course between 2018 and 2023, under the supervision of Dr Pedro Manso.

Barrages et ouvrages annexes

Key technologies in the Design and Construction of 300 m Ultra

High Arch Dams

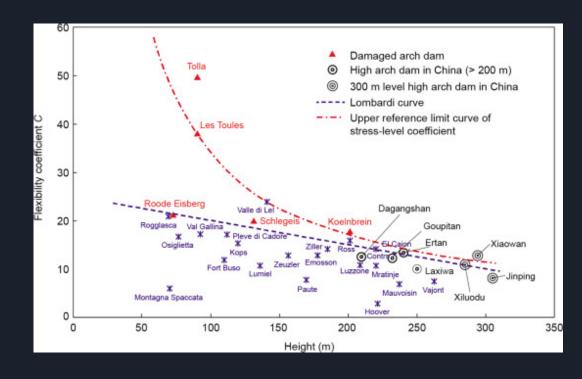
Pourquoi cet article est innovant?

- Divers challenges rencontrés lors du dimensionnement et de
 - la construction:
 - Optimisation et choix de la géométrie de la voûte
 - Conditions géologiques complexes
 - Grandes sollicitations
 - Fissuration et contrôle de la température
- Des solutions innovantes à ces problèmes

Optimisation de la géométrie de la voûte

- Le choix de la géométrie de la voûte dépend de :
 - -Topographie de la vallée
 - -Roches de fondations
- Coefficient d'hardiesse :

$$\mathbf{c} = \frac{\mathbf{S^2}}{\mathbf{V} \cdot \mathbf{H}}$$

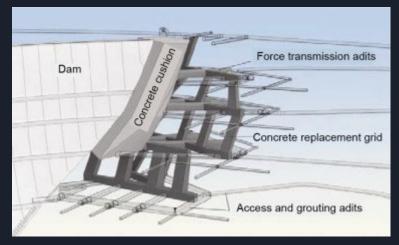

avec

c = coefficient d'hardiesse,

surface movenne du barrage,

V = volume de béton,

H = hauteur sur la fondation.


Traitement du sol de fondation

- Les barrages voûtes (h>200m) exigent une grande résistance de la fondation.
- Mesures de traitement du sol de fondation souvent nécessaires.
- Dépendent de la qualité de la roche et des propriétés des discontinuités dans ces roches.
- C'est le cas du barrage Jinping I :
 - Roches de fondation très altérées (sable)
 - Grandes sollicitations
 - Déformation de la roche observée
 - Présence de failles et discontinuités

Traitement du sol de fondation

Les mesures de traitement sol:

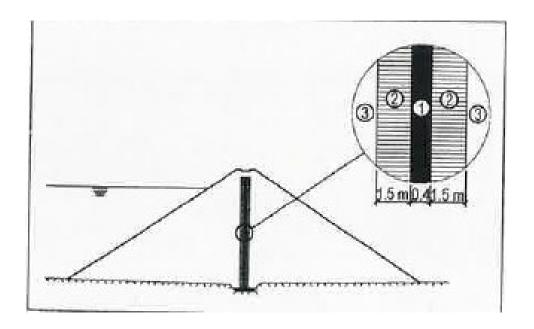
- Abutment concrete cushion
- Remplissage des failles avec du béton pour renforcer la masse rocheuse
- Force transmission adits
- Access and grouting adits

Contrôle de la température et mesures anticracking

- Utilisation de granulométrie diverse :
 - Combinaison de la haute résistance des granulats grossier et de bonne déformabilité des granulats fins -> Bonne durabilité et diminution de la fissuration du béton.
- Modification de la recette du béton utilisé :
 - Ajout de cendre volante -> Meilleure résistance et moins de dégagement de chaleur
 - Utilisation de fibre PVA (polyvinyl alcohol) -> Augmentation de 15% de la résistance à la traction du béton + diminution de l'augmentation de température

Contrôle de la température et mesures anticracking

- Calcul de l'effort thermique dans la voûte en béton → FEM
- •Saisons chaudes: Tuyaux de refroidissement automatisés + spray de vapeur d'eau pour diminuer la température lors de la mise en place → Eviter la fissuration du béton
- •Saisons froides: Couverture de s nouvelles surfaces bétonnées + Mise en place de planches de polystyrène sur les surfaces aval et amont du barrages
- •Contrôle permanent de la température de béton


Merci pour votre attention!

Des questions?

Informations pour la conception :

- -Noyau en asphalte en général fin
- -Autour du cœur AC → zone de transition en gravier fin
- -Socle du barrage en béton doit assurer une bonne adhérence
- -L'asphalte doit être posé couche par couche

Avantages et désavantages :

Avantages:

- -Asphalte positionné au milieu du barrage → meilleure durée de vie.
- -Peut être placé sur des sols de mauvaise qualité
- -Construction et remise en eau rapide
- -Capacité d'autoréparation de l'asphalte, grâce à sa viscosité
- -Coûts de maintenance faible
- -Bon comportement en cas d'instabilité du remblai

Désavantages:

-Le béton asphaltique a besoin d'agrégats de très bonne qualité

Prérequis et vérifications de qualité

Asphalte:

-Le mélange d'asphalte doit être étudié et de bonne qualité

-Vérifier que le ratio entre filler naturel et importé

Tests Triaxiaux:

- -Méthode très courante pour vérifier la qualité d'asphaltes
- -Servent surtout à vérifier la déformabilité et l'ouverture des fissures de notre asphalte
- -On veut éviter un ratio critique ($\frac{\sigma_3}{\sigma_1}=0,15$), favorisant l'ouverture des fissures

Durant la construction

Compactage:

- -Plusieurs méthodes de compactages utilisées, chargement dynamique et/ou statique
- -Pas vraiment de règle pour le compactage mis à part le respect des 3% max de vide

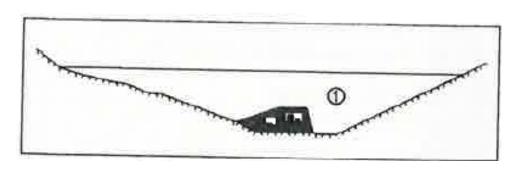
Machines spécialisées (tout en un) :

- -Finitions propres
- -Guidage par GPS
- -Double compactage
- -Système pour mieux lier l'asphalte

Contrôle qualité :

- -Chaque couche placée doit être recouverte par la suivante dans les jours qui suivent
- -Chaque mélange d'asphalte doit être testé
- -Des tests Marshall doivent être réalisés pour contrôler le volume d'air

Projets actuels


Skjerkevatn Dams, Norvège:

- -Plus large projet de barrage entrepris en Norvège
- -Remplacement d'un barrage déjà existant dans le but d'augmenter la capacité de stockage d'eau
- -Mise en place et remise en eau rapide grâce au ACED
- -Position du barrage fixe (remplacement)
- -Utilisation d'une machine spécialisée

Projets actuels

Barrage pour le contrôle de crue, Niederpöbel, Allemagne :

-Barrage avec portes en béton qui doivent se fermer en cas de crue et ainsi protéger le village de Niederpöbel

-Route et petite rivière qui traverse le barrage

-Sol de mauvaise qualité et pas d'argile disponible dans les environs

-Cœur asphaltique de 60 cm + zone de transition de 1.5 mètres

 -Le barrage doit être intégré au paysage naturel des environs → talus végétalisés

Critique

Barrages en noyaux asphaltiques vraiment parfaits?

- -Vérification au Séisme plus compliquée en réalité? Dépend de nombreux paramètres, notamment de la liaison asphalte sol de fondation
- -Méthode assez courante dans les pays ayant un accès facilité à des ressources pétrolières
- -Méthode souvent plus cher que celle avec l'utilisation d'argile
- -Entreprises spécialisées

Nam Ngiep 1

Speedy construction of the highest RCC gravity dam in Lao PDR

Table of content

- Some Key-Information
- RCC production
- Conveyor
- SLM Sloped-layer method
- (Dis-)Advantages of SLM
- Countermeasures
- Questions?

Some Key-Information

Name: Nam Ngiep 1

Location: Central Laos

Powergeneration: 1546 GWh

(~2300kWh/a per Pers. in Germany)

=> ~670k Pers

Damtype: gravity dam

Period of construction: 52 monthts (of which 24 for RCC placement)

Total RCC-Volume: 2,35x10⁶ m³

Average placement: 100k m³/month Peak: 190k m³/month

RCC production

Quarry

- Consists of usable **sandstone**, conglomerated sandstone, unusable mudstone
- Peak output: 492k tonne in one month

Crushing plant

No large stockpiling -> high-performance crushers implemented

Aggregate stockpiling

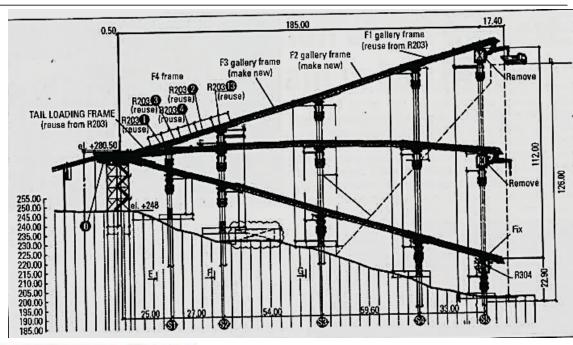
- Enough for 2 weeks RCC-Production (~ 288k tonne => ~120k m³ RCC)
- **High-speed conveyer** from crushing plant to RCC working aggregate bins (1000 t/h)

RCC production

2 independent batchin plants, output of 400 m³/h

RCC cooling systems

- Cooling belts (cooling tunnels)
- Ice plant


Conveyor

RCC delivery conveyor belt

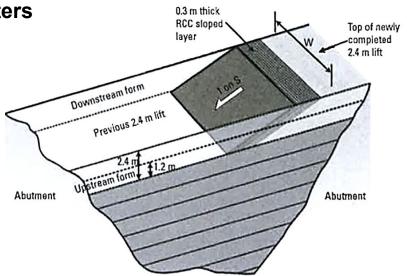
- 2 km long, designed to carry
 1030 t/h (= ~ 400 m³/h of RCC)
- Distribution hopper
- Conveyour on self-raising hydraulically operated masts
- Swinger (short conveyor)
- Dumper trucks

SLM - Sloped-layer method

Allows flexible design and construction parameters

(lift height, slope angle)

Lift height:


- Max benefit if max. height -> less cold joints
- Multiples of 1,2 m

Lift slope:

- Aim: one layer every 3-4 hours
- ⇒ Optimum layer quantity: 1200-1600 m³
 - ⇒ If less RCC production would be interrupted
 - ⇒ If more warm joints might occur

Excavation and rock clean-up:

- from left to right abutement ~ 5-7 days
- ⇒ Enough time for rock excavation (~30-40% less time needed, 3 months earlier than contractual date)

Rock foundation excavation and treatment.

(Dis-)Advantages of SLM

Advantages	Disadvantages
Weather independant due to small placement area	Feathered edges running upstream to downstream
Easy installation of galleries	RCC very sensitive to moisture variations due to high placement rate
Easy formwork erection and placement activities	Joints (hot, warm and cold)
Simple conveyor erection activities	Consolidation
	Contraction joints
	Formwork (special design)
	RCC-Curing
	Construction of the dam crest (167 m high, but just 7 m wide)

Countermeasures

Feathered edges running upstream to downstream

creating a RCC- 'foot' of steel (like a baking form)

Contraction joints

Plate vibrator with steel blade mountet on excavator

RCC-Curing

System of compressed air and water creating a mist

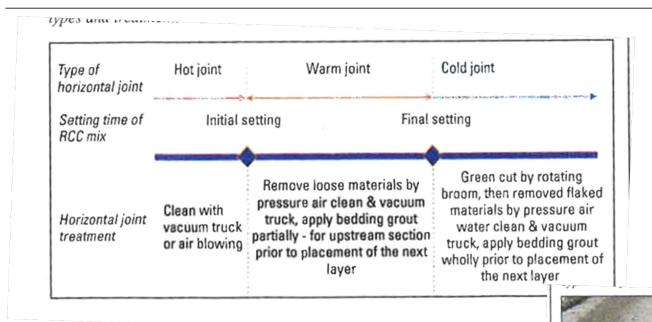
Construction of the dam crest

- Replacing 40t –trucks by 22t –trucks
- Yet very slow RCC placement (1000m³/day)

Any questions?

Some questions for you

- What was the disadvantage of horizontal RCC-placement compared to the SL-Method?
- What are cold joints? What might hot and warm joints be?
- Why was there a need to build a « fridge-coveyor »?
- What do you find questionable, what would you have done differently?



Thanks for your attention/ Merci pour votre attention!

Hot, warm and cold joints

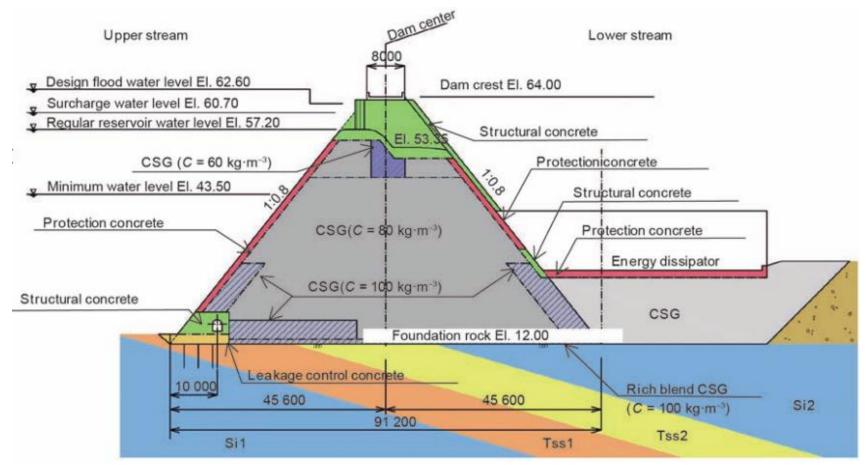
Cold joint treatment, showing the RCC surface after the steel brush treatment.

Curing of the beton

Spraying of air/water mist.

Curing of the upstream face.

Contenu


- Le concept du barrage en matière cimentée CMD (=cemented material dam)
- Trois types de barrages CMD
 - Barrage en sable, gravier et roche cimenté CSGRD (=Cemented sand, gravel and rock dam)
 - Barrage en enrochements cimentés RFC (=Rockfilled concrete dam)
 - Barrage en sol cimenté CSD (=Cemented soil dam)
- Comparaison de la granulométrie
- Comparaison de CO2 et d'énergie grise
- Discussion

Le concept du CMD

Cemented material dam

- Reprise des avantages des barrages poids
 - Stabilité au cas d'un séisme
 - Sécurité lors d'une rupture ou débordement pour la population et les structures en aval
- Mais avec la possibilité d'utiliser une variété de matériaux
 - Plus écologique
 - Distances de transports courts
- Avantages économiques
- Réduire le temps de construction


Le concept du CMD Barrage en matière cimentée

Tobetsu, Japon (hauteur h=52 [m])

Barrages en matière cimentée

Le concept du CMD Barrage en matière cimentée

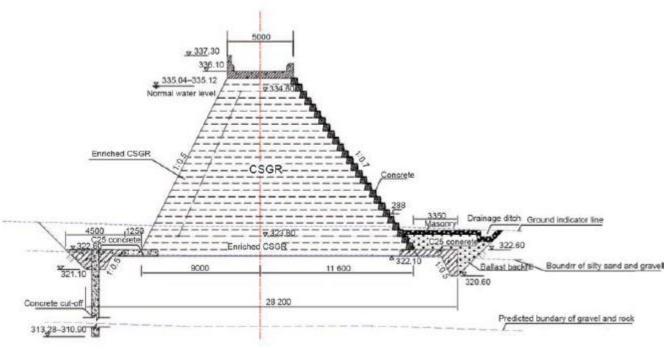
Tobetsu, Japon (hauteur h=52 [m])

Barrages en matière cimentée

Le concept du CMD Barrage en matière cimentée

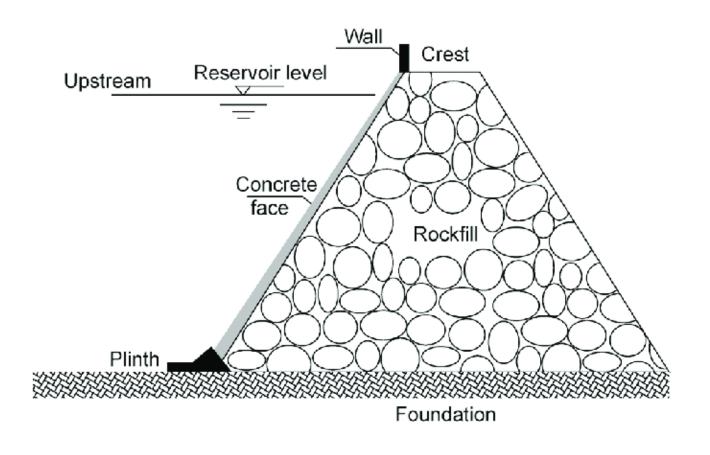
Tobetsu, Japon (hauteur h=52 [m])

Barrages en matière cimentée


Barrage en sable, gravier et roche cimenté

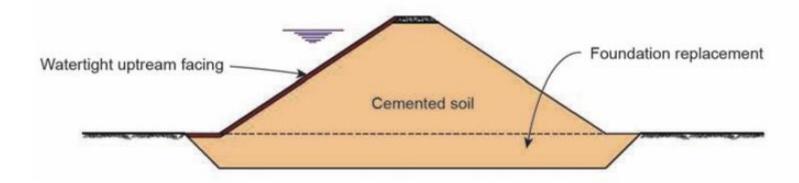
CSGRD

- Mixture de roche, gravier ou sable avec la matière cimentée pour l'augmenter la cohésion
- Diamètre des grains jusqu'à 150 [mm]
- Avantages
 - Homogénéisation des contraintes par rapport à un barrage poids (différence lac vide – lac plein)
 - Grande résistance contre le glissement
 - Matériaux locaux peuvent être utilises (si pas possible, agrégats artificiels)

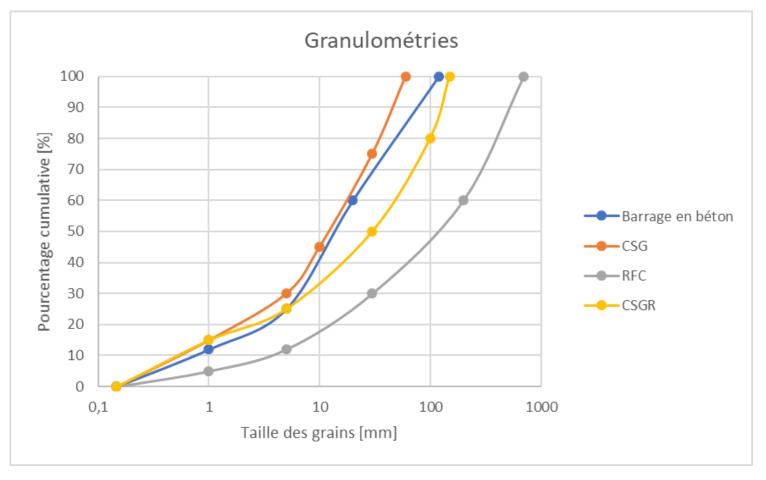

Barrage en sable, gravier et roche cimenté CSGRD

Shoukoubu, Chine (h = 61,4 [m]) et Qianwei, Chine (h = 14,1 [m])

Barrage en enrochements cimentés RFC

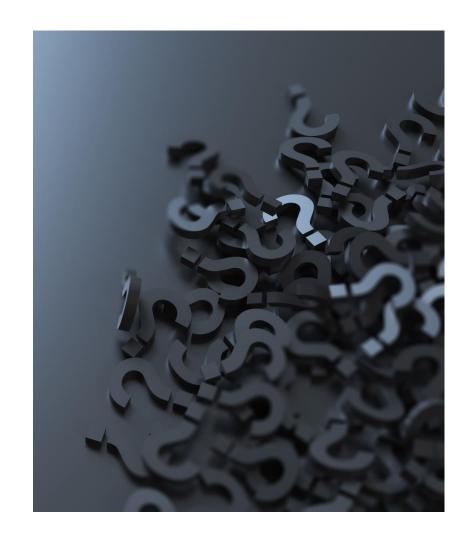

Barrage en enrochements cimentés

RFC

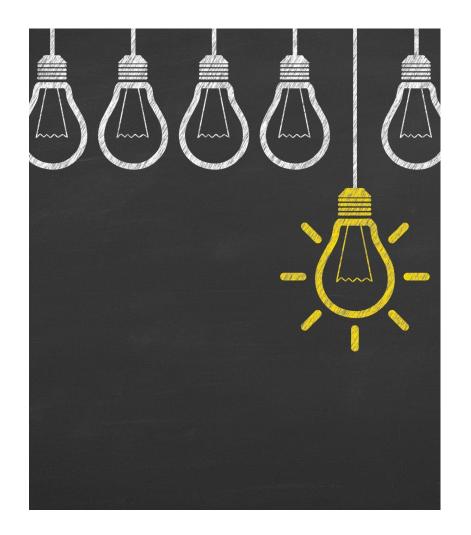

- But : prendre la matière rocheux (d > 300 [mm]) et de remplir les vides avec un béton autoplaçant à haute résistance
- Principe comme maçonnerie
- Beaucoup moins de ciment doit être utilise que pour un barrage poids
 - Moins cher
 - Plus grande distance entre les joints possibles

Barrage en sol cimenté CSD

- Mixture du sol (souvent sol argileux ou limoneux) avec la chaux ou le ciment pour "coller" les particules du sol ensemble
- Augmente la cohésion (pas l'angle de friction)
- Bien pour barrages petite à moyenne hauteur
- Pentes sont déterminées par processus de construction

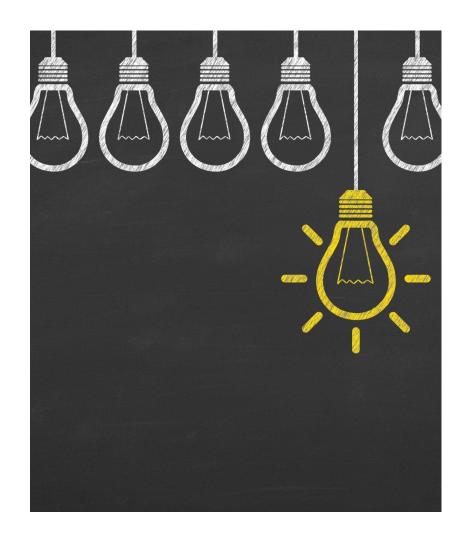


Comparaison granulométrie



Comparaison de CO2 et d'énergie

Type	Matière cimentée	transporter le ciment	pour les	CO2 par tonne de	5-	CO2 par m3 de béton [kg]	Energie par m3 de béton [kWh]
Barrage en							
béton	250	40	40	640	19,60	290	478
CSG	100	40	1	640	1,27	183	289
CSGR	120	40	1	640	1,43	195	293
RFC	140	40	1	640	1,58	207	296
CSD	225	40	1	640	2,25	257	310



EST-CE QU'IL Y A DES QUESTIONS?

DISCUSSION

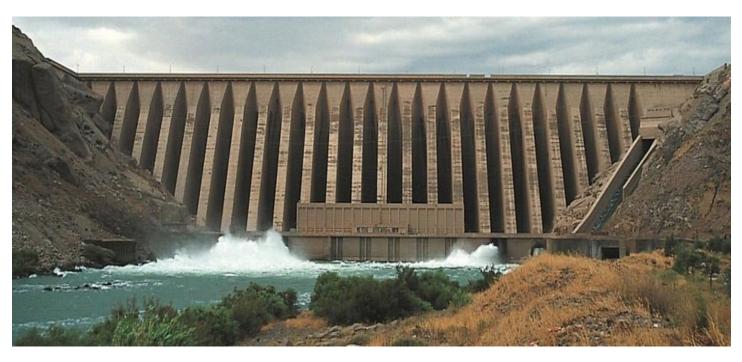
Que sont les désavantages de ce nouveau concept?

DISCUSSION

Quand est-il possible/intéressant de remplacer un barrage poids avec un CMD?

Réferences

- Jinsheng Jia, Michel Lino, Feng Jin, Cuiying Zheng: The Cemented Material Dam: A New, Environmentally Friendly Type of Dam, (http://www.sciencedirect.com/science/article/pii/S2095809917300851)
- http://damnet.or.jp/cgi-bin/binranA/enAll.cgi?db4=0171
- Monitoring structures with optical fibers: Infiltration detection Scientific Figure on ResearchGate. Available from: https://www.researchgate.net/figure/Concrete-face-rockfill-dam_fig1_325673777 [accessed 19 Nov, 2020]
- https://www.hindawi.com/journals/ace/2020/8289520/
- https://travauxbeton.fr/densite-ciment/
- http://lebeton.free.fr/environnement.html
- https://www.encyclo-ecolo.com/B%C3%A9ton%2C_ciment_et_environnement
- https://www.bgl-ev.de/images/daten/emissionen/vergleich.pdf


Réponse sismique d'un barrage béton à contreforts rénové

Seismic response of a retrofitted concrete buttress dam 1997

M. GHAEMIAN, McMaster University, Canada

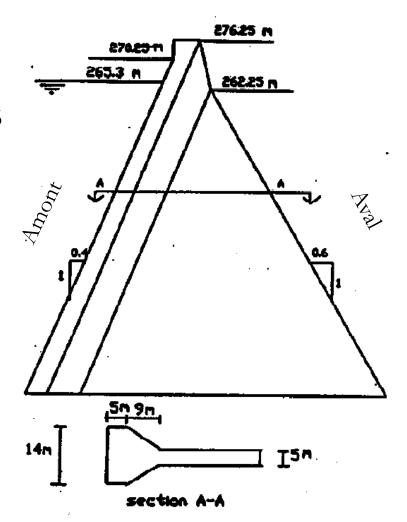
1) Contexte

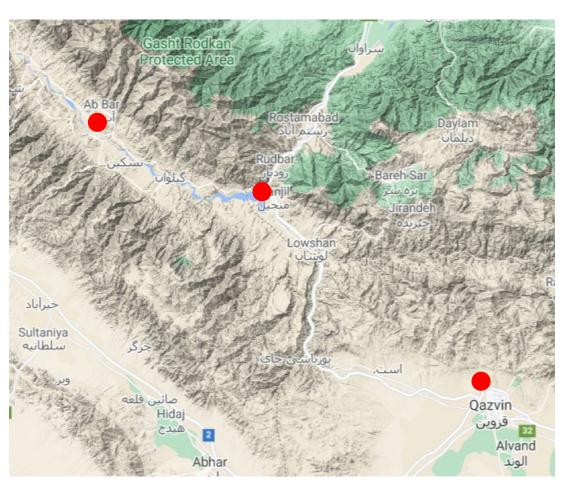
Vue avale du barrage

Localisation du barrage

2) Géométrie d'un plot type

* béton non armé


❖ 30 plots : 24 contreforts et 6 poids


♦ Hauteur: 106 m

Couronnement: 425 m de long

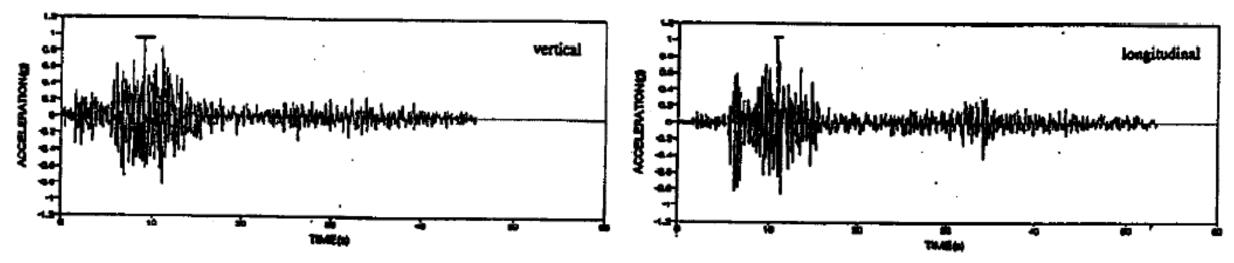
Fruit amont: 0,4

❖ Fruit aval : 0,6

Stations de mesures sismiques

3) Séisme de Manjil-Rudbar

- * barrage plein lors du séisme
- épicentre à 10 km du barrage
- deux stations de mesures à Abbar et à Ghazvin
- * dégâts sévères :
 - déplacements permanents entre plots d'environ 5 cm, sens amont-aval
 - fissure horizontale majeure le long du barrage, 14 m sous le couronnement



Vue amont du barrage en retenue pleine

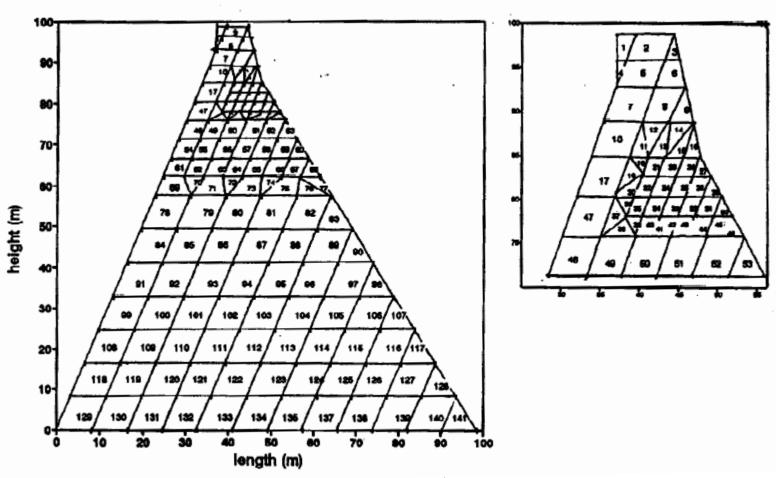
3) Séisme de Manjil-Rudbar

- * mesures d'Abbar retenues car sol de fondation similaire à celui du barrage
- ❖ PGA calculé en deux points → ratio
- ce ratio permet de mettre à l'échelle les valeurs d'Abbar

Accélérations horizontale et verticale sur le site du barrage, rétro-calculées à partir des mesures d'Abbar

4) Analyse dynamique : modélisation

- ❖ code de calcul → EAGD-84
- maillage grossier en base et plus fin en tête

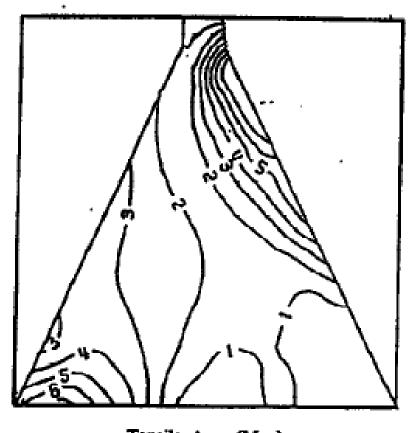

Hypothèses de calcul:

•
$$\sigma_c = 16,5 \text{ MPa}$$

$$\bullet \sigma_{t} = 4,19 \text{ MPa}$$

$$E = 20$$
 Gpa

* accélération verticale et horizontale

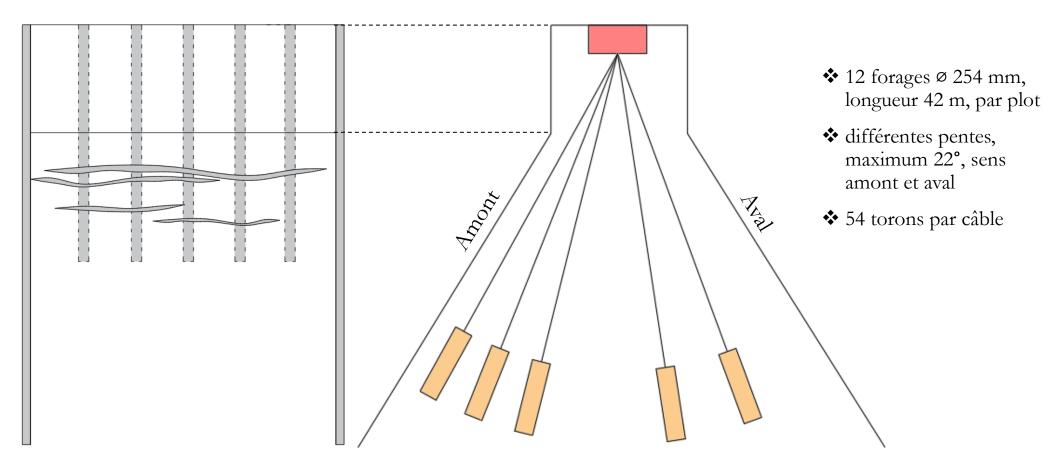


MEF utilisé pour la modélisation, plot central

4) Analyse dynamique : résultats

- contrainte de traction dépassée dans 10 éléments à t = 9,6 s.
- \bullet le premier élément à dépasser σ_t est le 27.
- * coïncide avec la fissure observée

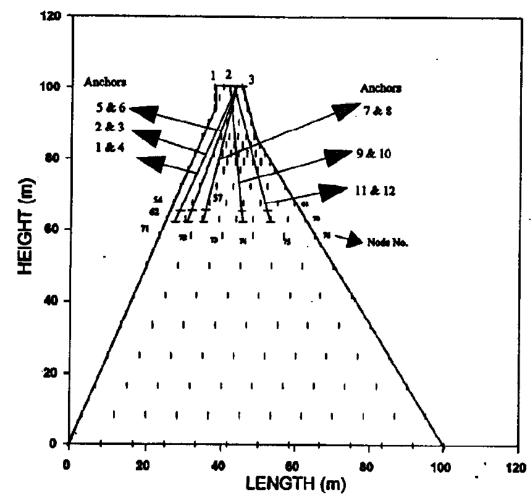
Tensile stress (Mpa)


Compressive stress (Mps)

Contraintes de traction et de compression maximales, plot central

5) Travaux de réparation

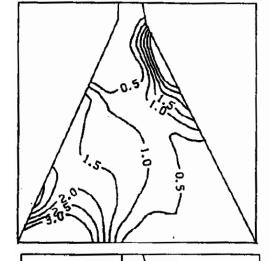
- ❖ 23-25 forages Ø 46 mm par plot
- ❖ 1,5 à 3 tonnes de résine par plot
- remplir les joints entre plots, les fissures, les micro-fissures de retrait

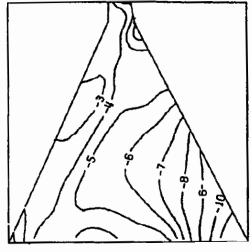

1 : injection résine epoxy

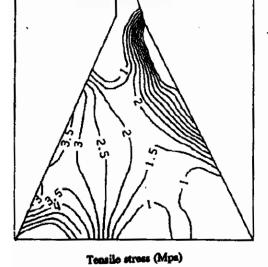
2 : installation de tirants d'ancrage

6) Modélisation des ancrages

- hypothèse : force ponctuelle appliquée au nœud le plus proche
- * pour le scellement, deux forces nodales : 80% et 20%
- * pour le bloc d'ancrage, une seule force nodale à 100%

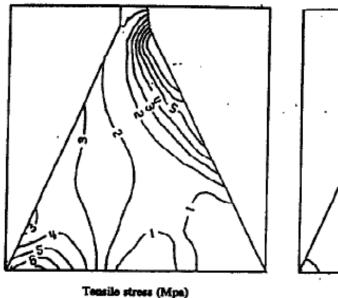

Localisation des forces d'ancrage dans le MEF

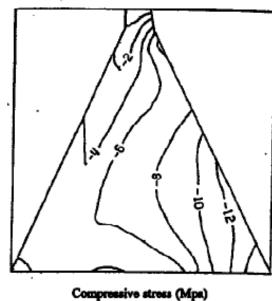



7) Analyse dynamique après réparations

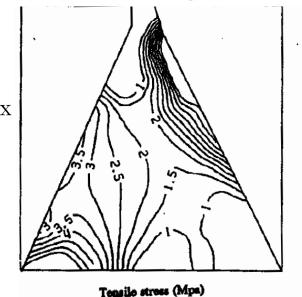
- ❖ hypothèse : séisme de Manjil-Rudbar = MCE
- ❖ DBE = $0.57 \cdot MCE$
- * deux valeurs représentatives des mesures de la station d'Abbar
- $\bullet \sigma_{\rm c} = 16,5 \text{ MPa}$
- $\sigma_t = 4,19 \text{ MPa}$

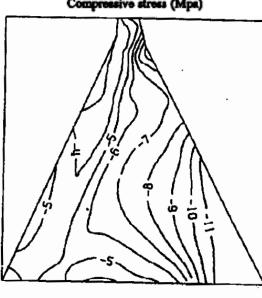
DBE


Compressive stress (Mpa)



8) Conclusions


- ❖ Avant travaux : apparition des fissures aux endroits observés
- ❖ Cas DBE : réduction contrainte maximale de traction, aucun dépassement
- **♦** Cas MCE :
 - Fort gradient des isocontraintes côté aval sous couronnement, donc fissuration moins pénétrante
 - Traction talon amont


Avant travaux

Après travaux (MCE)

Compressive stress (Mpa)

9) Critiques sur l'article et discussions

- ❖ Utilisation jugée partiellement efficace des tirants d'ancrage à remettre dans le contexte (manque de place pour les ancrages aval, potentiel dépassement de contrainte en traction en amont après t=9,6 s)
- Pourquoi ne pas avoir repris les sollicitations de l'analyse dynamique avant travaux?
- Qu'en est-il du barrage en retenue vide ? (risques de la précontrainte)
- ❖ Résine pas prise en compte dans le modèle → hypothèse que le béton avec résine retrouve la loi de comportement du béton d'origine.

Questions supplémentaires :

- Analyse uniquement réalisée sur le plot central
- Comment l'exploitation a été impactée par cet évènement extrême ? Y a-t-il eu un arrêt complet de l'exploitation durant les réparations ?
- ❖ Si oui, le manque à gagner aurait-il pu être anticipé dans le conception de l'ouvrage ? (dimensionnement pour un MCE d'amplitude 8 par exemple)

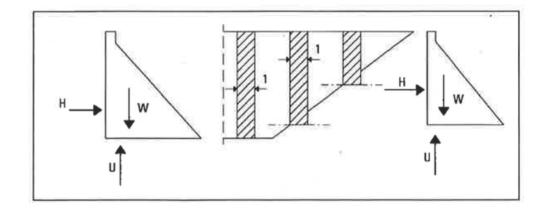
3-D analysis of gravity dams (G. Lombardi, 2007)

Barrages et ouvrages hydrauliques annexes

Exercice 4

Jonas Klok

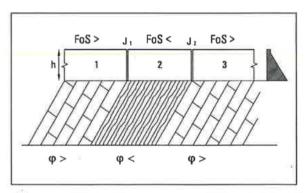
EPFL - 1 novembre 2022

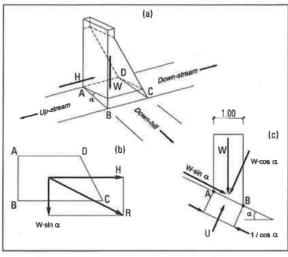

Plan de la présentation

- > Introduction
- > Approche de l'auteur
- > Analyse critique
- > Conclusion

Introduction

- > Article de G. Lombardi paru en 2007 dans Hydropower & Dams
- > Traite de l'analyse des barrage-poids
- > Traditionnellement:
 - ➤ Analyse 2D
 - > Section simplifiée (profil triangulaire)
 - > Considération de coupes représentatives
 - > Calcul par tranche unitaire
 - > Fondation admise plane (dans et hors plan)

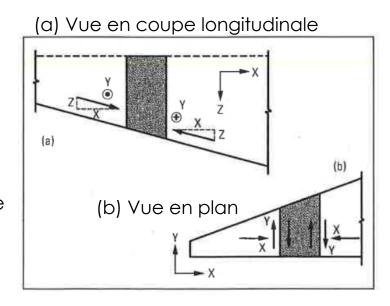

→ Justifiable car barrage-poids initialement conçu pour topographies à vallées larges et faibles pentes



Introduction

Approche traditionnelle -> mauvaise évaluation des facteurs de sécurité si :

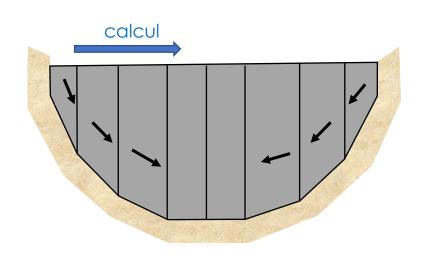
- > Géologie variable le long de la fondation
 - Cas fréquent
 - o Facteur de sécurité pour chaque bloc indépendamment (analyse 2D)
 - Cette approche peut mener à des concepts défavorables économiquement
 - o Mieux: fermer les joints -> comportement 3D et augmentation locale du facteur de sécurité
- > Inclinaison de la surface de fondation
 - o Dans le passé : fondation en escalier faisable car bon massif, mais plus de nos jours ...
 - o L'inclinaison des blocs lors du calcul 2D est souvent (implicitement) négligée
 - o Impact sur la stabilité au glissement des blocs :
 - > Augmentation des sous-pressions (surface apparente plus grande)
 - Réduction de la composante résistante du poids
 - → Surestimation du facteur de sécurité par analyse 2D traditionnelle

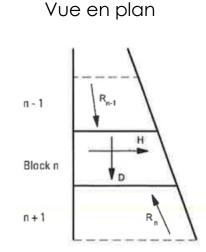

Approche de l'auteur

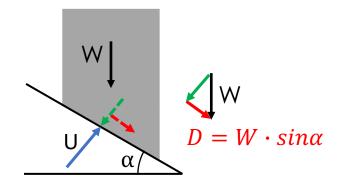
Postulation: barrage-poids dans des vallées à pentes raides > analyse 3D

Proposition : méthode simplifiée basée sur la méthodes des « facteurs de charges »

Les actions sont multipliées par le FS requis et les résistances considérées avec leur valeur réelle


- > Illustration de la méthode pour la sécurité au glissement
- > Hypothèses de la méthode :
 - > Barrage = série de blocs reliés par des joints
 - > Surface de fondation inclinée, potentiellement horizontale au fond de la vallée
 - > Inclinaison considérée uniquement perpendiculairement à l'axe de la vallée
 - > Effets favorables comme clés de cisaillement ou butée rocheuse négligés





Approche de l'auteur

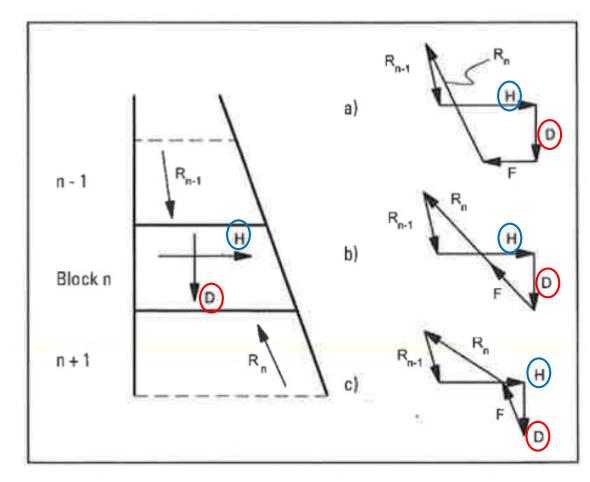
- > Les blocs s'appuient les uns sur les autres : calcul itératif
 - > Des extrémités au centre de la vallée
 - > La transmission des forces entre blocs dépend des caractéristiques des joints et de la fondation
 - \triangleright Valeur de la résistance au glissement F connue \rightarrow fonction de φ et c
 - > Direction de Finconnue ...

H: poussée hydrostatique

R_i : réaction du bloc i

D : composante déstabilisatrice du poids

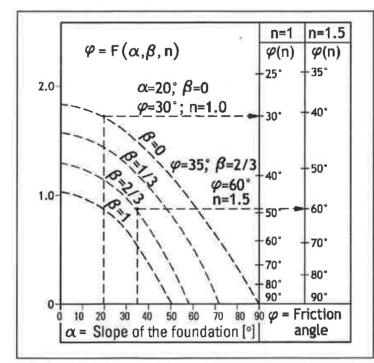
F: Résistance au glissement

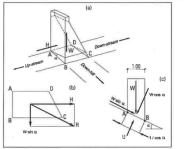


Approche de l'auteur

- \triangleright Pour la direction de F \rightarrow 3 cas :
 - a) F ne résiste que à H (poussée de l'eau) :
 - Différence H-F et D → transmis au bloc suivant
 - Excessivement favorable à l'équilibre
 - b) Fagit dans la direction de la résultante R_n
 - Forces excédentaires → transmis au bloc suivant
 - Défavorable à l'équilibre
 - c) Frésiste à D (cas des joints ouverts par ex.)
 - Dépend de la nature des joints
 - Forces excédentaires → transmises par cisaillement et compression des joints au bloc suivant

Réalité: entre les cas a) et b) → Hypothèses!


Pour le calcul : possibilité d'introduire des joints « virtuels » aux changements de conditions géologiques ou d'inclinaison

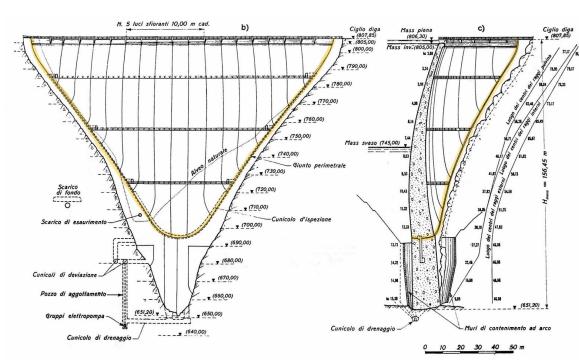


Analyse critique

- La méthode présentée est conceptuellement simple à comprendre
- Elle permet dans des cas de plus en plus fréquent une meilleure estimation du FS
 - Les sols de fondation encore disponibles sont médiocres/mauvais
 - La topographie idéale de plus en plus rare
 - → L'hypothèse de tranches 2D indépendantes est trop « simple » pour considérer ces effets défavorables
- > Attention aux hypothèses : géologie, joints, etc.
- > Coût calculatoire plus élevé que l'approche traditionnelle
 - → à partir de quand vaut-elle la peine ?

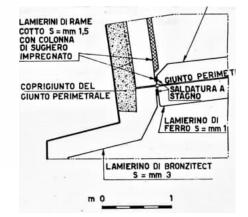
Analyse critique et conclusion

- > Article comme mise en garde pour les praticiens contre les hypothèses erronées
- > Méthode pour la sécurité au glissement : nécessiterait un élargissement aux autres problèmes de stabilité (renversement, etc.)
- > Article de 2007 ... soit **15 ans** ... mais sommes-nous conscients de ces problèmes ?
 - Personnellement, non ...
 - Exercice 1 = Méthode traditionnelle -> de nos jours, toujours utilisée par « automatisme »
 - Impact pour notre future carrière :
 - o Risque d'erreur d'analyse ...
 - o Choix de variante non économique et non durable ...
- Il est important de se tenir à jour des nouvelles innovations : l'inertie du domaine du génie civil est très grande et les changements se font lentement



 École polytechnique fédérale de Lausanne

EPFL Peripheral joint

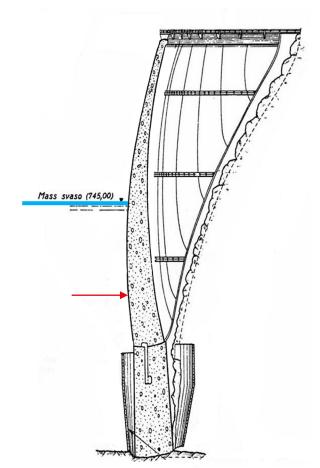


Speccheri Dam

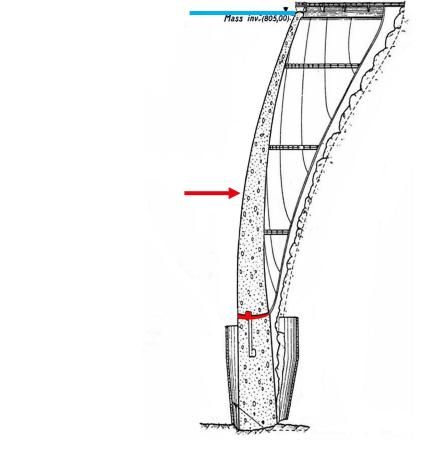
LEGENDA:

- Termometro nel calcestruzzo
- > Termometro in acqua
- 7 Termometro in aria
- Termoestensimetro a rosetta
- → Estensimetro
- H Dilatometro
- ☐ Cassette terminali

Cancano Dam



Val d'Auna Dam


Enrico Pinelli & Pedro Manso

EPFL

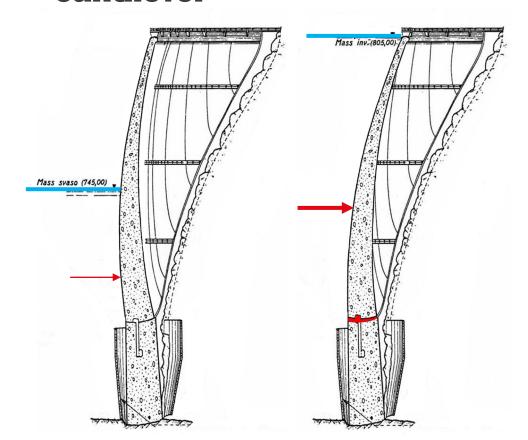
Peripheral joint

Peripheral joint

EPFL

Peripheral joint

• The result of analysis demonstrates that setting the perimetral joint will reduce cantilever stress near the dam heel effectively. The stress near dam heel with joint has a great improvement, whereas the variations of stress and displacement at other locations are negligible.

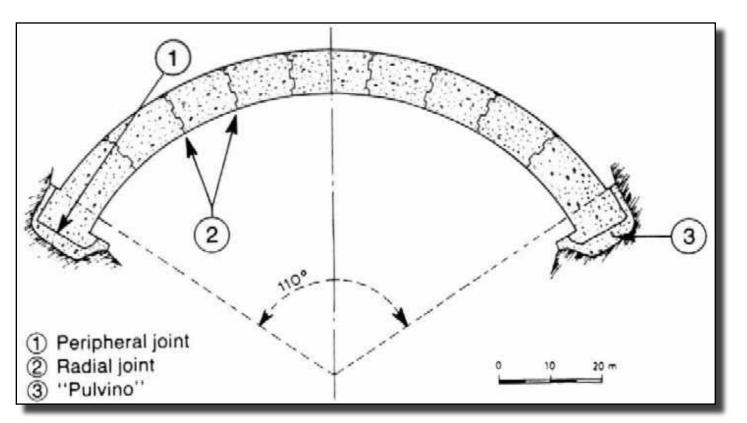

Du Chengbin, Ren Qingwen, *Nonlinear Finite Element Analysis of Dams with Perimetral Joints*. Computational Mechanics - New Frontiers for the New Millennium, 2001.

• It is found that modeling peripheral joint between saddle and the main dam body changes the direction of principal stresses and their distribution patterns and safety of the system is improved. In addition, over stressed surfaces on faces of the dam body decreased in comparison with the model without peripheral joint.

Hariri-Ardebili, M. A. and Mirzabozorg, H. and Ghaemian, M. *PULVINO and Peripheral Joint Effects on Static and Seismic Safety of Concrete Arch Dams*. Scientia Iranica, 2013.

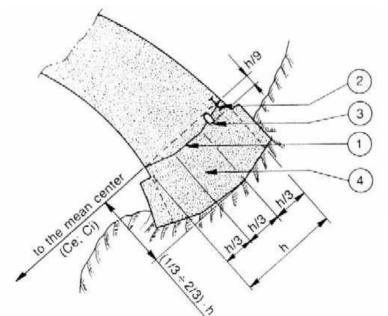
Peripheral joint - cantilever

Reduce


- Foundation embedding effect
- Cantilever base moment
- Tensile stresses at heel, if not compensated by self-weight

Solution

- Joint parallel to rock interface
- Watertight (w/ waterstops)

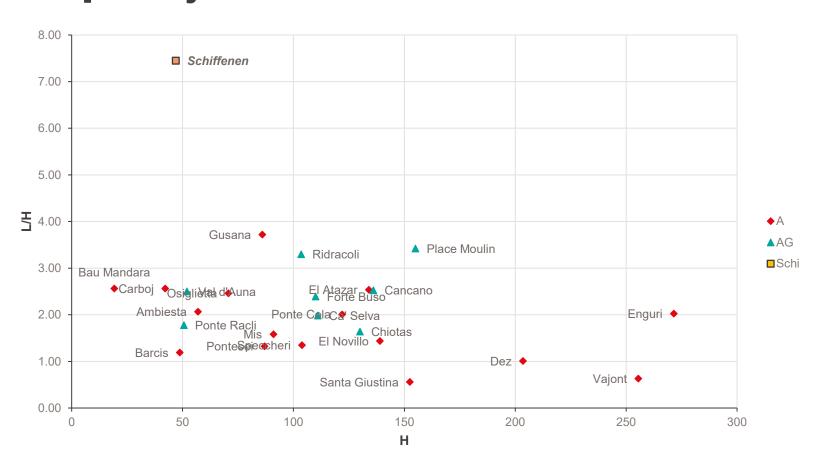

Peripheral joint – arch

Example of Osiglietta dam in Italy

Peripheral joint – details

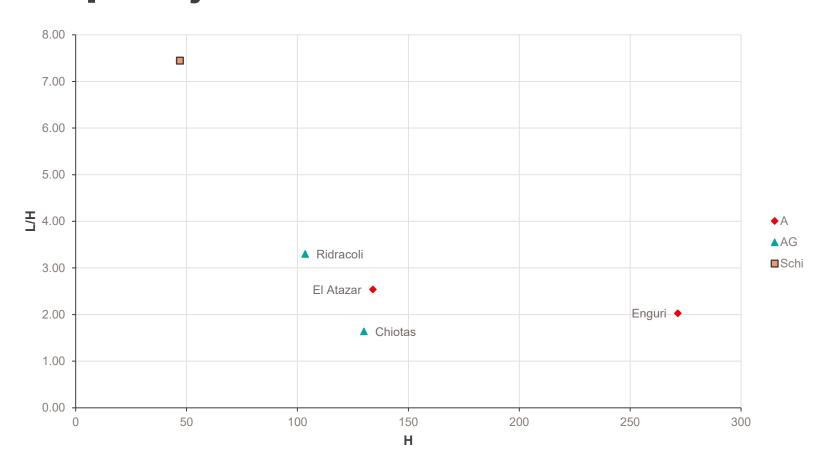
- 1. Peripheral joint
- 2. Waterstop sealing elements
- 3. Peripheral gallery
- 4 Pulvino
- 5. Pulvino galeries (injections/drainage)
- 6. Steel reinforcement

PERIPHERAL JOINTS IN ARCH DAMS

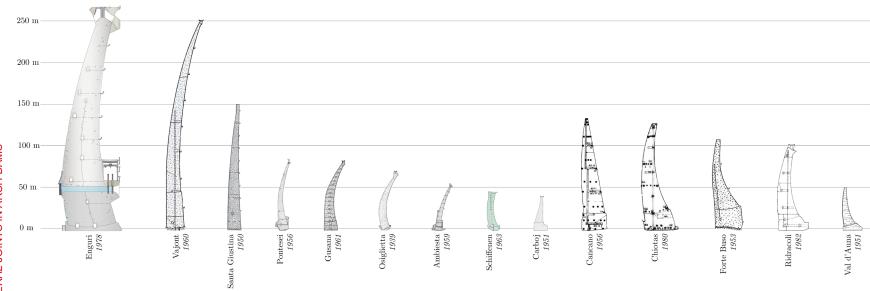


Peripheral joint dams

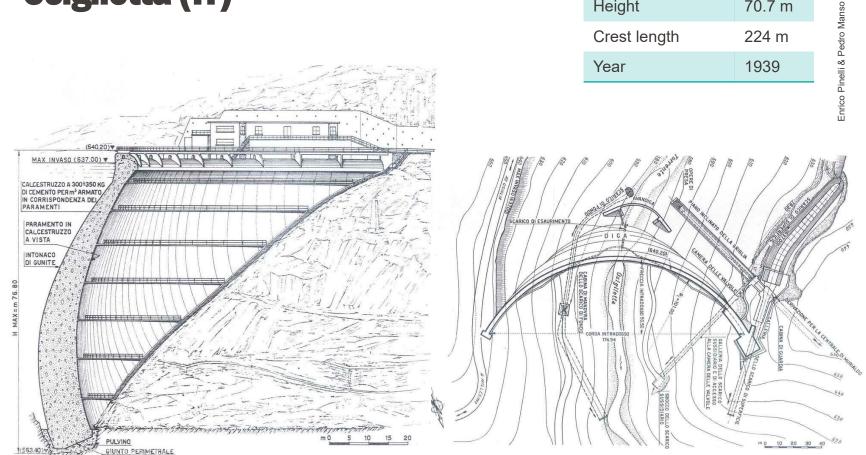
Dam	Loc	Type	H [m]	S [m]	L [m]	L/H	m asl	V [hm3]	Year
Enguri	GE	Type A	272	728	550	2.03	511	1100	1978
Vajont	IT	A	256	191	161	0.63	808	(169)	1976
Vajoni	IR	A	204	240	205	1.01	354	3340	1963
Santa Giustina	IT	A	153	124	85	0.56	533	183	1950
El Atazar	ES	A	134	400	340	2.54	870	425	1972
Ponte Cola	IT	A	122	284	245	2.01	505	52	1962
Speccheri	IT	Α	104	192	140	1.35	808	10	1957
Mis	IT	Α	91	160	144	1.58	430	41	1962
Pontesei	ΙT	Α	87	150	115	1.33	807	(10)	1956
Gusana	ΙΤ	Α	86	369	320	3.72	645	60	1961
Osiglietta	ΙT	Α	71	224	174	2.46	640	13	1939
Ambiesta	ΙΤ	Α	57	145	118	2.07	486	3.9	1959
Barcis	ΙΤ	Α	49	71	58	1.19	405	14	1955
Schiffenen	CH	Α	47	417	350	7.45	534	59	1963
Carboj	ΙT	Α	42	138	108	2.56	181	35	1951
Bau Mandara	ΙT	Α	19	62	49	2.56	807	0.3	1949
Place Moulin	ΙΤ	AG	155	678	530	3.42	1970	105	1965
Cancano	ΙΤ	AG	136	381	343	2.53	1902	124	1956
Chiotas	ΙT	AG	130	230	213	1.64	1980	30	1980
Ca' Selva	ΙT	AG	111	242	220	1.98	495	42	1963
Forte Buso	ΙT	AG	110	321	263	2.39	1460	32	1953
Ridracoli	ΙΤ	AG	104	432	341	3.30	561	33	1982
Val d'Auna	ΙΤ	AG	52	150	130	2.50	918	0.4	1951
Ponte Racli	ΙΤ	AG	51	110	90	1.78	315	25	1952


EPFL

Peripheral joint dams



Peripheral joint dams – After 1970



Sections comparison

Osiglietta (IT)

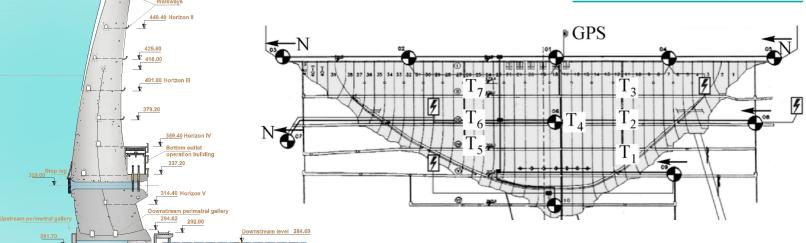
Height	70.7 m
Crest length	224 m
Year	1939

EPFL

Enguri (GE)

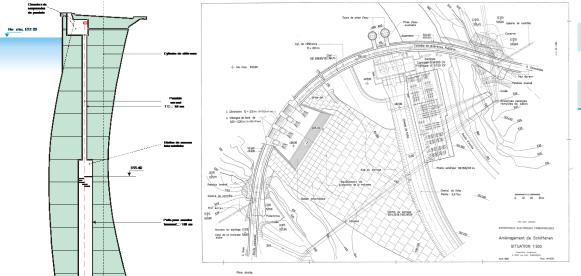
Main pump chamber

Boundary of foundation

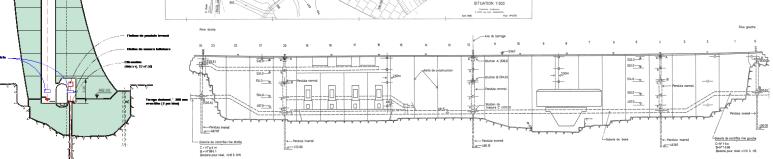

Height 271.5 m

Crest length 728 m

Year 1978


Thickness at crest 10 m

Thickness at base 46 m



EPFL

Schiffenen (CH)

Height	47 m		
Crest length	417 m		
Year	1963		
Thickness at crest	7 m		
Thickness at base	12 m		

Conclusions & perspectives

- The peripheral joint & pulvino system were used between the 1930's and the 1980's
- The kinematic behaviour of such system is more intuitive for dams in wider valleys, with lower load transfer to the valley flanks by arch effect
- The behaviour of such dams under extreme earthquake loading is intriguing and there is no literature evidence of open research
- Understanding the behaviour of 10+ European concrete dams provided with peripheral joints & pulvino across 35 to 85 years can be instrumental for the design of robust dam strengthening and heightening projects

EPFL

 École polytechnique fédérale de Lausanne